5.4. Тени
Если положения наблюдателя и источника света совпадают, то теней не видно, но они появляются, когда наблюдатель перемещается в любую другую точку. Изображение с построенными тенями выглядит гораздо реалистичнее, и, кроме того, тени очень важны для моделирования. Например, особо интересующий нас участок может оказаться невидимым из-за того, что он попадает в тень. В прикладных областях - строительстве, разработке космических аппаратов и др. - тени влияют на расчет падающей солнечной энергии, обогрев и кондиционирование воздуха.
Наблюдения показывают, что тень состоит из двух частей: полутени и полной тени. Полная тень - это центральная, темная, резко очерченная часть, а полутень - окружающая ее более светлая часть. В машинной графике обычно рассматриваются точечные источники, создающие только полную тень. Распределенные источники света конечного размера создают как тень, так и полутень: в полной тени свет вообще отсутствует, а полутень освещается частью распределенного источника. Из-за больших вычислительных затрат, как правило, рассматривается только полная тень, образуемая точечным источником света. Сложность и, следовательно, стоимость вычислений зависят и от положения источника. Легче всего, когда источник находится в бесконечности, и тени определяются с помощью ортогонального проецирования. Сложнее, если источник расположен на конечном расстоянии, но вне поля зрения; здесь необходима перспективная проекция. Самый трудный случай, когда источник находится в поле зрения. Тогда надо делить пространство на секторы и искать тени отдельно для каждого сектора.
Для того чтобы построить тени, нужно по существу дважды удалить невидимые поверхности: для положения каждого источника и для положения наблюдателя или точки наблюдения, т. е. это двухшаговый процесс. Тень может образовываться двояко: это собственная тень и проекционная. Собственная тень получается тогда, когда сам объект препятствует пропаданию света на некоторые его грани. При этом алгоритм построения теней аналогичен алгоритму удаления нелицевых граней: грани, затененные собственной тенью, являются нелицевыми, если точку наблюдения совместить с источником света.
Если один объект препятствует попаданию света на другой, то получается проекционная тень. Чтобы найти такие тени, нужно построить проекции всех нелицевых граней на сцену. Центр проекции находится в источнике света. Точки пересечения проецируемой грани со всеми другими плоскостями образуют многоугольники, которые помечаются как теневые многоугольники и заносятся в структуру данных. Для того чтобы не вносить в нее слишком много многоугольников, можно проецировать контур каждого объекта, а не отдельные грани.
После добавления теней к структуре данных, как обычно, строится вид сцены из заданной точки наблюдения. Отметим, что для создания разных видов не нужно вычислять тени заново, так как они зависят только от положения источника и не зависят от положения наблюдателя.